Malaysia
2025-04-29 01:34
IndustryIdentify ARIMA Parameters
#CurrencyPairPrediction
Identify ARIMA Parameters (p, d, q) ARIMA has three parameters:
• p = lag order (autoregressive)
• d = differencing order
• q = moving average order Use ACF (AutoCorrelation Function) and PACF (Partial AutoCorrelation Function) plots: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf plot_acf(price_diff, lags=40) plot_pacf(price_diff, lags=40) plt.show()
• ACF plot → helps choose q (MA part).
PACF plot → helps choose p (AR part). Or, automatically find best (p, d, q) using auto_arima: from pmdarima import auto_arima model = auto_arima(price, seasonal=False, trace=True) print(model.summary())
Like 0
sadiq435
Trader
Hot content
Industry
Event-A comment a day,Keep rewards worthy up to$27
Industry
Nigeria Event Giveaway-Win₦5000 Mobilephone Credit
Industry
Nigeria Event Giveaway-Win ₦2500 MobilePhoneCredit
Industry
South Africa Event-Come&Win 240ZAR Phone Credit
Industry
Nigeria Event-Discuss Forex&Win2500NGN PhoneCredit
Industry
[Nigeria Event]Discuss&win 2500 Naira Phone Credit
Forum category

Platform

Exhibition

Agent

Recruitment

EA

Industry

Market

Index
Identify ARIMA Parameters
#CurrencyPairPrediction
Identify ARIMA Parameters (p, d, q) ARIMA has three parameters:
• p = lag order (autoregressive)
• d = differencing order
• q = moving average order Use ACF (AutoCorrelation Function) and PACF (Partial AutoCorrelation Function) plots: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf plot_acf(price_diff, lags=40) plot_pacf(price_diff, lags=40) plt.show()
• ACF plot → helps choose q (MA part).
PACF plot → helps choose p (AR part). Or, automatically find best (p, d, q) using auto_arima: from pmdarima import auto_arima model = auto_arima(price, seasonal=False, trace=True) print(model.summary())
Like 0
I want to comment, too
Submit
0Comments
There is no comment yet. Make the first one.
Submit
There is no comment yet. Make the first one.